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Agenda
Privacy-preserving data processing at scale
• Scalability perspective
• From HPC to the cloud (vertical vs. horizontal)
• Outsourcing data processing (on-premises vs. off-premises)

• Privacy perspective
• Threats and vulnerabilities
• Protecting data and computations
• Towards confidential computing
• Practical security with TEEs
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Data processing at scale: HPC
•HPC reaching beyond computational science
• Digitalisation of society (producing data, using services)
• Processing capabilities moving to the end users

•New needs: wealth of new problems and applications
• End-user applications: games, multimedia (music, video), …
• Big data: from information-generating technologies, e.g., 

mobile computing, sensor/social networks
• Cryptocurrencies, machine learning, artificial intelligence!

•New means: multi-cores, GPUs, FPGAs/ASICs
• Aggregation of computers (clusters) and data centres (cloud)
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Scalability: a HW perspective
• Specialised ISA
• SIMD (e.g., AVX)

• Parallelism
• Threads, multi-cores
• Multi-processors
⇒ Vertical

• Distribution
• Clusters, data centres
• Cloud infrastructures
⇒ Horizontal
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From HPC to cloud computing
•Horizontal scalability is “unlimited”
• Clusters and data centres provide massive computing power
• Cloud computing federates data centres

• Cloud is an appealing paradigm
• Cost savings due to sharing (economies of scale)
• Affordable for SMEs
• Widely applicable: IaaS, PaaS, SaaS, DaaS, FaaS, ?aaS
• Easy/ubiquitous access to data
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Cloud: Outsource infrastructure
• Operating own computing 

infrastructure is not easy
• Data centre, hypervisors, 

operating systems, 
containers, services, etc.

•⇒ Outsourcing
• Zero maintenance

• Yet, tempting to attack
• Remotely accessible
• Infrastructure, software, 

data must be secured!
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Why is cloud security important?
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Why is data so important?
• Data is a key asset for businesses
• Moving data offsite is an inherent security risk

•⇒ Data must be protected at all times

• Data at rest (storage) or in flight (transmission)
• Encryption helps

• Data in use (processing)
• Secure processing of encrypted data is very hard
• Cryptographic techniques are not practical (yet)
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Clouds have a big “attack surface”
• Cloud infrastructures are 

inherently complex
• Each layer has its own set of 

potential vulnerabilities
• Multi-tenancy: applications 

must be isolated
• The whole stack must be 

protected from attacks
• Wide range of threats: 

privileged access, insiders, 
attacks and exploits, …
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The software stack is huge
• Cloud platforms contain enormous

amounts of code that must be trusted
• Linux kernel: 27+ MLOC
• OpenStack: 20+ MLOC
• KVM: 200+ kLOC

• Cloud platforms are effectively a trusted computing base 
(TCB): all components of the system are critical to 
security
• Software, hardware
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Bugs are a reality
•More code ⇒ more bugs
• Vulnerabilities may lead to disclosure of confidential data

• Xen hypervisor: 450+ vulnerabilities (as of 2024)
 [https://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276]

• Linux kernel: 4000+ vulnerabilities (as of 2024)
 [https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33]

• Especially bad in privileged software
• May result in unrestricted access to the system

• Protected mode (rings) is not sufficient
• Flaws and exploits can lead to privilege escalation
• The attack surface is the whole software stack
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Software attacks in the cloud
• Performed remotely (run software on victim’s machine)
• Control-flow hijacking
• Execute arbitrary code on the target machine by modifying 

the application’s control flow
• Code injection attack
• Overwrite the return address by writing beyond the allocated 

buffer on the stack (inject code) and jump to the injected code
• Return-oriented programming (ROP)
• Hijack control flow by corrupting stack (no injection) and jump 

to sequences of instructions (gadgets) already present in 
memory (e.g., libc) ending with a return
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Hardware attacks in the cloud
• Performed locally (physical access to victim’s machine)
• Bus snooping
• Dump CPU Û memory communication

• Cold boot attacks
• Power cycle the machine, boot to a lightweight OS, dump 

memory contents…
…or remove memory modules, plug into another machine, 

dump memory contents
• DRAM retains its state for a short period of time
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Some examples
• “Row hammer” attack
• Attack the system by causing bit-flips in memory
• Carefully chosen addresses can result in privilege escalation

• “Heartbleed” bug
• Buffer overrun in OpenSSL cryptographic software library
• The attacker can obtain sensitive data from server’s memory: 

passwords, private keys, …
• “Meltdown”, “spectre” and other side-channel attacks
• Allow a program to access the memory and secrets of other 

programs and the operating system
 ⇒ Sound “theoretical” solutions fail in “real” systems!

Privacy-Preserving Data Processing at Scale: How Much Can You Trust Your Cloud Provider? — P. Felber 15



Example: “Row hammer” attack
• Attack the system by causing bit-

flips in memory
• Accessing physical bits causes 

neighboring bits to flip
• Carefully chosen addresses can 

result in privilege escalation
• Effect
• Sandbox escape
• Corrupted page table
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Example: “Heartbleed” bug
• Serious vulnerability in the popular OpenSSL 

cryptographic software library
• Very widely used: apache/nginx (60+% of Web servers), email 

servers, chat servers, VPN, etc.
• Buffer overrun when replying to a heartbeat message
• Allows anyone on the Internet to read the memory of the 

systems protected by the vulnerable versions of the 
OpenSSL software
• The attacker can obtain sensitive data from server’s memory: 

passwords, private keys, …
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Cryptography for cloud security?
• Cryptography can help protect data in the cloud…
• Encryption for confidentiality: information is not available or 

disclosed to unauthorised individuals, entities or processes
• Digital signature, MACs, secure hashes, … for integrity: data 

cannot be modified in an undetected manner

• …but how can we protect confidentiality and integrity in 
untrusted environments while enabling data processing?
• Data should be searchable (e.g., range queries) and updatable 

(e.g., aggregation), yet not leak information (e.g., statistical 
attacks)
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Encrypted data processing
•Homomorphic encryption

“a form of encryption which allows specific types of computations to be 
carried out on ciphertext and generate an encrypted result which, when 
decrypted, matches the result of operations performed on the plaintext” 

[wikipedia]

• Fully homomorphic encryption [Gentry 2010]

• Supports arbitrary functions on encrypted data
• Addition, multiplication, binary operations

Can homomorphic encryption be practical?
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Homomorphic encryption [https://eprint.iacr.org/2011/405.pdf]

S� SH.Keygen SH.Enc SH.Dec SH.Add SH.Mult SH.Mult

precomp. deg 1 deg 2 w/ deg red
t D n dlg(q)e ms ms ms ms ms ms ms ms s
2 1 512 19 27 60 81 2 2 � < 1 � �

2 1024 38 55 120 171 9 6 10 1 15 0.34
3 2048 64 110 260 353 29 18 33 1 56 1.98
4 2048 89 111 270 357 32 19 35 1 59 2.94
4 4096 94 221 540 733 82 46 89 2 155 7.63
5 4096 120 223 560 742 85 49 94 3 163 10.59
10 8192 264 438 1480 1738 425 227 454 7 887 114.57
15 16384 423 880 4000 4176 1503 781 1561 14 3160 669.40

128 1 1024 27 54 110 163 4 4 � < 1 � �

2 2048 52 110 270 348 23 15 25 1 41 0.23
3 2048 82 110 270 357 32 20 35 1 60 0.44
3 4096 86 222 520 724 69 41 77 4 130 1.05
4 4096 118 221 550 740 86 49 93 4 162 1.62
5 4096 150 221 590 771 117 65 124 4 226 2.76
10 8192 324 437 1620 1845 548 283 565 6 1069 26.17
10 16384 338 870 3540 3864 1269 656 1327 19 2501 63.49
15 16384 513 864 4710 4503 1925 977 1960 29 3844 145.55

1024 1 1024 30 54 110 164 5 4 � < 1 � �

2 2048 58 110 250 348 24 15 26 1 41 0.19
3 2048 91 111 270 366 38 22 41 2 73 0.46
3 4096 95 221 530 733 81 46 88 4 154 0.95
4 4096 130 220 580 756 102 57 109 4 196 1.50
5 4096 165 220 600 770 117 64 125 4 226 2.19
5 8192 171 440 1250 1582 275 148 288 5 526 5.33
10 8192 354 435 1720 1824 523 271 538 9 538 19.28
10 16384 368 868 3690 3851 1260 664 1300 19 1593 48.23
15 16384 558 863 5010 4805 2343 1136 2269 13 4411 126.25

Table 2: Timings for the somewhat homomorphic encryption scheme using the example parameters given in

Table 1. The column labeled S� gives timing for sampling an element from the discrete Gaussian distribution

�. In the second column for SH.Enc, labeled prec., encryption is measured without sampling from �, which

is instead done as a precomputation. The two columns for SH.Dec correspond to decryption of a degree-1
and a degree-2 ciphertext, respectively. The last column gives the time taken for a ciphertext multiplication

of two linear ciphertexts including the degree reduction resulting in a degree-1 ciphertext for the product.

Measurements were done on a 2.1 GHz Intel Core 2 Duo using the computer algebra system Magma [BCP97].

For our applications (e.g., computing standard deviations),
this is an acceptable trade-o↵ since we only anticipate doing
a single multiplication (or, at most a small number of them
in the case of computing higher-order regression functions).

4.2 Packing Many Bits in a Ciphertext
We show how to transform ciphertexts that encode n bits

b0, b1, . . . , bn�1 separately, into a single ciphertext that en-
codes the polynomial b(x) = b0 + b1x+ . . .+ bn�1x

n�1.
Given n ciphertexts cti = (c0,i, c1,i) that encrypt the bits

bi, it is easy to see that the ciphertext

ctpack , (
X

i

c0,ix
i,
X

i

c1,ix
i)

encrypts the polynomial b(x) = b0 + . . . + bn�1x
n�1. (It is

equally easy to do this with homomorphically evaluated –
and thus, potentially longer – ciphertexts as well).
In contrast, it seems much harder to unpack a ciphertext.

Namely, transform a ciphertext that encodes the polynomial
b(x) = b0 + . . .+ bn�1x

n�1 into n separate ciphertexts that
encode the bits bi. This is a useful thing to do when the
homomorphic computation demands that the messages be
encrypted bit-wise, forcing the client to send many cipher-
texts, one for each bit. If we had a technique for unpack-
ing bits, we could have the client send a single ciphertext,
unpack it at the server’s end, have the server perform com-
putations, and finally, pack the result into one ciphertext to
send it back.

5. IMPLEMENTATION DETAILS
We have implemented the somewhat homomorphic pub-

lic key encryption scheme in the computer algebra system
magma [BCP97] and ran experiments on an Intel Core 2
Duo processor at 2.1 GHz. We use magma’s polynomial
arithmetic for all computations in Rq, in particular we use
magma’s addition and multiplication of polynomials over Zq

modulo xn + 1.

Choice of Parameters. To assess the security of our encryp-
tion scheme, we assume that an adversary carries out the
attacks described in [MR09, LP11]. We follow the analy-
sis described in [LP11] and adjust it to our setting. This
leads to specific parameter choices for di↵erent required ci-
phertext degrees D. The results are summarized in Table 1.
According to the analysis in [LP11], the chosen parameters
mostly provide a security level of around 128 bits or more
against the distinguishing attack with advantage ✏ = 2�32.
We explain the choice of the parameters in detail in Ap-

pendix A. We end this discussion with the remark that both
n and log q seem to grow almost linearly in D (more pre-
cisely, they grow as D logD). This observation is confirmed
by our concrete parameter calculations.

Mean and variance computation. To compute the mean,
we do not need any multiplications, just additions of ci-
phertexts, i.e. the maximal degree of ciphertext we need is
D = 1. We used the parameters from Table 1 with t = 1024,
D = 1 and n = 1024. The corresponding 30-bit prime is
q = 1061093377 and has been chosen so as to support up
to 1000 additions. We do not compute the ciphertext of
the mean, but of the sum of all numbers instead together
with a ciphertext encrypting the number of numbers that
have been added. The mean can then easily be computed

t D n dlg(q)e � lg(T)
2 1 512 19 1.0054 123

2 1024 38 1.0058 107
3 2048 64 1.0051 134
4 2048 89 1.0072 64
4 4096 94 1.0038 218
5 4096 120 1.0049 145
10 8192 264 1.0055 117
15 16384 423 1.0044 172

128 1 1024 27 1.0041 199
2 2048 52 1.0041 198
3 2048 82 1.0067 78
3 4096 86 1.0035 250
4 4096 118 1.0048 149
5 4096 150 1.0062 92
10 8192 324 1.0068 74
10 16384 338 1.0035 243
15 16384 513 1.0054 122

1024 1 1024 30 1.0047 164
2 2048 58 1.0046 164
3 2048 91 1.0074 59
3 4096 95 1.0039 215
4 4096 130 1.0053 124
5 4096 165 1.0068 73
5 8192 171 1.0035 242
10 8192 354 1.0074 59
10 16384 368 1.0039 214
15 16384 558 1.0059 103
32 65536 1298 1.0034 255
64 131072 2705 1.0036 239

Table 1: Example parameters and cost of the distin-

guishing attack from [LP11] for distinguishing ad-

vantage ✏ = 2�32
, i.e. c ⇡ 2.657, modulus t for the

message space Rt, maximal ciphertext degree D, size

of prime q, Hermite root factor �, and logarithm of

the runtime lg(T ).

by one division after decryption. Computing the ciphertext
for the sum of 100 numbers of size 128-bits from the single
ciphertexts takes about 20ms.
Computation of the variance requires one multiplication.

Suitable parameters are given in Table 1 as t = 1024, D = 2,
and n = 2048 with the 58-bit prime q = 144115188076060673.
To obtain the ciphertexts for the sum and sum of squares
that can be used to determine mean and variance takes
about 6s.

Potential Improvements. We remark that our implementa-
tion uses the generic polynomial arithmetic in magma. A
number of performance optimizations are possible; we men-
tion one such possibility, suggested to us by Daniele Mic-
ciancio. The encryption scheme uses addition and multipli-
cation of polynomials over Zq modulo xn + 1, where n is a
power of two and q = 1 (mod 2n). However, the particular
choice of n and q could allow for much faster implementa-
tions than the generic magma code. Such optimizations have
already been considered in the context of hash functions
(e.g., SWIFFT [LMPR08]) that use fast Fourier-transform
techniques to speed up computations.
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�. In the second column for SH.Enc, labeled prec., encryption is measured without sampling from �, which

is instead done as a precomputation. The two columns for SH.Dec correspond to decryption of a degree-1
and a degree-2 ciphertext, respectively. The last column gives the time taken for a ciphertext multiplication

of two linear ciphertexts including the degree reduction resulting in a degree-1 ciphertext for the product.

Measurements were done on a 2.1 GHz Intel Core 2 Duo using the computer algebra system Magma [BCP97].
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Table 1. The column labeled S� gives timing for sampling an element from the discrete Gaussian distribution

�. In the second column for SH.Enc, labeled prec., encryption is measured without sampling from �, which

is instead done as a precomputation. The two columns for SH.Dec correspond to decryption of a degree-1
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Database of 1 million items
• Aggregation (1 addition per item): 15+ minutes
• Range query (1 multiplication per item): 10+ hours



Homomorphic encryption
•HELib: open-source homomorphic encryption library in 

C++ by IBM [https://github.com/homenc/HElib]

• Many optimisations to make HE “practical”, i.e., run faster
• Low-level routines (set, add, multiply, shift, etc.)

• Still far from being practical
• Orders of magnitude slower than operations on plaintext
• Addition: ~1+ ms — Multiplication: ~10/100+ ms
• HELib evaluated the AES-128 circuit in 36 hours in 2012

(vs. 2 ms in the clear) [https://mpclounge.files.wordpress.com/2013/04/hespeed.pdf]

• Several other libraries, e.g., Microsoft SEAL, OpenFHE 
[http://github.com/Microsoft/SEAL], [http://github.com/openfheorg]
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Homomorphic encryption [https://arxiv.org/pdf/2202.02960.pdf]
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Fig. 1: Overall times for all operations compared between each other with default parameters (1000 iterations).
For operations of +�⇥, values are in form t/r, where t is time in ms, and r is the ratio of t and the time execution of the same operation
took over plaintexts.
E.g., PyAono’s addition is 246,897 times slower than plaintext addition.

each parameter are impactful enough to have a separate record
in the results and not too big to break the system. This also
helped to simplify the results of the experiment by identifying
parameters with dependant values or values that were advised
to be left unchanged. Those were then removed from the scope
of the experiment.

For every test, a single parameter of each cipher is changed,
and each cipher is tested individually. A control test was
conducted using the default value of each parameter, to act
as a point of reference in every test. Data from all tests were
recorded and charted, as demonstrated in sections below and
in the Appendix.

IV. EMPIRICAL RESULTS

Due to the irregular range of data values collected, charts
were plotted using a logarithmic scale. Please note that
differences in bar length are not linearly proportional to
differences in computation time.

Tests were run on the three basic operations, namely addition,
subtraction, and multiplication. Division was left out due to
SEAL, PyAono and Paillier not supporting division, whereas for
ElGamal division is completely equivalent to multiplication. We
considered applying our number encoding scheme to support

division in SEAL and PyAono, but eventually decided that the
results are more informative if the implementations are tested
in their “vanilla” form.

Results were obtained using operations on ciphertexts from
all five ciphers, as well as on plaintext for scale. All tests
were conducted without bootstrapping (where applicable), as
the strategy on deciding when to execute this computationally
expensive procedure is non-trivial and varies from one use-
case to another. All three plain text operations ran at the same
efficiency, which was on average ⇡ 1.8 ⇥ 10�9 seconds per
one execution, which is also ⇡ 104 times as fast as the fastest
homomorphic operation, which appeared to be multiplication
by ElGamal.

All tests conducted were ran on 1000 pairs of 2-digit
plaintext numbers. Each test was repeated 5 times and the mean
result was tabulated for each operation. Aggregated results are
presented in Figure 1. Paillier possesses the fastest addition,
subtraction, and key generation operations, ElGamal — the
fastest multiplication operation, HElib demonstrates the fastest
encryption, and SEAL has the fastest decryption. PyAono
was least efficient in four operations, namely multiplication,
encryption, decryption, and key generation. Its addition and
subtraction operations are also relatively inefficient, topping

2.2B× slower in 
multiplication!



Cloud and stakeholders: A matter of trust
•Multiple parties share the 

same infrastructure
• Each stakeholder protects 

its own resources
• The application owner 

protects the application
• The cloud provider protects 

the system
• They do not necessarily 

trust each other
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Systems security: Bottom-up
• Systems are structured in layers
• E.g., OS and hypervisor

• Typically, systems security is 
bottom-up
• Layer i+1 (↑) trusts layer i (↓)

…but layer i does not trust layer i+1
• E.g., the OS trusts the hypervisor

…but the hypervisor does not trust 
the OS
…which does not trust the container 
engine, nor the layers above (K8s…)
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Confidential computing: Top-down
“Application-oriented 

security”
• The application owner 

protects his assets from 
adversaries
• Code, data, secrets

• The cloud provider is not 
trusted
⇒ Confidential computing 

environment
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Trust is a two-sided problem (1/2)

Provider’s perspective
• Cloud provider needs to protect 

against malicious customers
• Hypervisor-based isolation
• Both security and performance

• One-way protection
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Trust is a two-sided problem (2/2)

Client’s perspective
• Tenant is forced to trust the 

provider…
…including personnel
…including every software component

• Ideally, we want to trust only our 
service
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What is confidential computing? (1/3)

Confidentiality
Guarantees that…

information (data, code, 
secrets) is not made 

available or disclosed to 
unauthorised individuals, 

entities, or processes
Only authorised 

users/programs can read
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What is confidential computing? (2/3)

Integrity
Guarantees that…

information (data, code, 
secrets) cannot be modified 

in an unauthorised or 
undetected manner

Only authorised 
users/programs can update
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What is confidential computing? (3/3)

Consistency
Guarantees that…

one always reads the latest 
information (data, code, 
secrets) written by an 

authorised entity
⇒ Detect if an adversary 
provides old copies (correctly 
encrypted but since updated)

Always accessing
the last version
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Confidential computing: Goals
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1. Protect the data and the code 
from unauthorised users
• At rest, in flight, in use

2. Attest the platform and the code
• Only run unmodified applications on 

verified platform (attestation service)
3. Does not hamper performance

Who is authorised?
Who are the adversaries?
“Know thy enemy and know yourself…”

Based on slides by C. Fetzer (TU Dresden)



Who is authorised?
• Cloud infrastructures deal with many stakeholders (roles) 

and support multi-tenancy
• Infrastructure providers operate computers and manage 

resources
• Service providers operate the services
• Application providers prepare “containerised” applications
• Data owners provide and monetise the data
• Data scientists use the applications and services
• Auditors check the source code for vulnerabilities
• …

• Requires role-based access management (policies)
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Who are adversaries? [https://www.intel.com/…/threat-modeling.html]

Adversary Description
Unprivileged Software Adv. Typically known as a “user-space” adversary; capabilities are limited by the instruction set architecture (ISA) or 

hardware platform or x86/x64 (or IA-32/Intel 64) to the capabilities granted by the system software.

System Software Adv. Full control over the operating system, or virtual machine monitor. This adversary can manipulate x86/x64 in any 
manner allowed by the instruction set architecture specification.

Startup code and SMM Adv.
All capabilities of the System Software Adversary, as well as control over initial boot code and system 
management mode. This adversary can manipulate x86/x64 in any manner allowed by the instruction set 
architecture specification. This adversary also has the ability to compromise system and platform firmware.

Network Adv.
Access to and may have control over various network fabrics that are used to connect the platform to other 
platforms, intranet, or extranet resources. This adversary can also interact with remote systems through 
predefined APIs.

Software Side Channel Adv.
Able to gather statistics from the CPU regarding execution and may be able to use them to extract secrets from 
software being executed. This adversary can also observe hardware resource usage to infer information and 
secrets from software being executed. This adversary can often directly influence resource usage (e.g., by 
causing contention) or by modulating an input to a victim program.

Simple Hardware Adv. Physical access to the system and typically doesn’t require expensive equipment or extraordinary 
training/specialty.

Skilled Hardware Adv. Physical access to the system and additional equipment and/or training that isn’t accessible to the average 
individual consumer.

HW Reverse Engineer Adv. Physical access to the system, specialized tooling (which can be rented), and highly specialized expertise.

Authorized Adv.
Intel or partner-granted authority that has capabilities not available to unauthorized entities. This may include 
access to manufacturing facilities and systems, access design facilities and design systems or with access to 
devices that haven’t completed all manufacturing steps.
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The quest for (practical) security
• Production systems must be protected
• Mission-critical, vulnerable to hackers
• Manage sensitive data

• Distributed systems are exposed
• Remote data and code and data must be protected

• Execution environments must be secure (both ways!)
• Protect the environment from the application
• Protect the application from the environment

• Performance must be preserved
•⇒ Leveraging trusted execution environments (TEEs)
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Trusted execution environments (TEEs)
• TEEs isolate applications from the rest of the system
• Segregated area of memory and CPU protected by HW 

against powerful attacks
• Its content is shielded from other applications, compromised 

OS and system libraries, attackers with physical access to the 
machine, …

• Uses “attestation” to verify SW and HW before execution
• Guarantees data confidentiality and code integrity
• Prevents unauthorised parties outside TEE from reading data
• Prevents unauthorised parties from replacing or modifying 

code in TEE
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Data confidentiality and code integrity
•Data in TEE never leaves the CPU package unencrypted
• Outside the CPU, data is encrypted
• In the TEE, data can be processed in plaintext

• Code is verified before execution by the CPU
• Validates integrity of cache lines and virtual-to-physical 

addresses (e.g., by maintaining the root of a Merkle tree)
• Cryptographic operations performed by a dedicated 

memory encryption engine (MEE)
• Transparently encrypts and decrypts memory (cache lines)
• Provides support for efficient paging
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Trusted execution environments (TEEs)
• Various TEE architectures exist and depend on the CPU
• They differ by their threat model and capabilities
• Intel SGX: enclaves
• Arm TrustZone: separate systems (two “worlds”)
• AMD SEV: virtualised systems (VMs)
• Intel TDX: trusted domains (VMs)
• Arm CCA: realms (system-wide hardware isolation)
• RISC-V: several proposed extensions
• …
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Intel SGX
Software guard extensions
•Hardware extension in recent

Intel CPUs since Skylake (2015)
• Protects confidentiality and

integrity of code and data in
untrusted environments
• The platform is considered malicious by default
• Only the CPU chip and the isolated region are trusted
• Code is attested (via Intel attestation service)

• Code runs in an “enclave”: a piece of trusted software
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SGX architecture and API
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• Secure code runs “native speed”…
• …but API is quite complex
• Need to heavily modify legacy code

• …small enclave page cache (EPC)
• SGXv1: 128 MB (~96 MB w/out paging)
• SGXv2: up to 1 TB

• Performance of memory accesses
• Native speed in L1/L2/L3 cache
• Reasonable within the EPC
• Huge when paging to main memory



Arm TrustZone (TZ)
• TZ is widely spread on small and IoT

devices with a Cortex-A/M processor
• Separates devices in two worlds
• The normal world
• The secure world

• One trusted application (TA) at a time
• Provides memory confidentiality but not integrity
•No built-in attestation service
• Limited memory per TA (~4–32 MB in practice)
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AMD SEV
• SEV-SNP is supported on

computers and servers with
EPYC 7003+ series processors
• Each trusted environment is

a secure virtual machine
• SEV-SNP provides both memory

confidentiality and integrity
• Support for remote attestation
• Unlimited amount of addressable memory
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Comparison of TEEs [https://arxiv.org/pdf/2206.03780]
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A complete CC architecture 
•Many (distrustful) stakeholders 

require proper governance 
• Access control via policy engine

• Secrets (DB password, encryption 
key, etc.) must be protected
• Confidential managed vault

• Performance should be preserved
• All secure operations within TEEs

• Complete confidential computing 
architectures are available
• E.g., SCONE [https://sconedocs.github.io]

Privacy-Preserving Data Processing at Scale: How Much Can You Trust Your Cloud Provider? — P. Felber 43

Based on slides by C. Fetzer (TU Dresden)



TEEs are no silver bullet
• Require some craft from programmers
• SDK is only available for limited programming languages
• Constrained development environments

•Might lack fundamental properties
• E.g., attestation or integrity are not always supported

• Performance can be poor (e.g., memory limitations)
• Requires good knowledge of system issues
• No POSIX API (hard to write or migrate existing applications)

• Continuous stream of (side-channel) attacks
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Security for energy-efficient HPC [LEGaTO]

• Low-energy toolset for heterogeneous computing
• Task scheduling across CPUs, GPUs, FPGAs, ASICs, Pi…
• Objectives: scalability, energy-efficiency, dependability, 

security (with SGX)…

CPU GPU FPGA
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Security for public clouds [SecureCloud], [SafeCloud]

• µ-services within containers in TEEs in (public) clouds
• Full stack, multiple languages (C/C++, Go, Rust, Java, Python, 

Lua…), secure channels, SGX-aware scheduling, monitoring, 
core µ-services (communication, storage, map-reduce)…

Container
Micro-service

Enclave

Micro-service runtime

Application logic

Guest OS (w/ SGX)

Hypervisor + HW (w/ SGX)

Container
Micro-service

Enclave

Micro-service runtime

Application logic

Guest OS (w/ SGX)

Hypervisor + HW (w/ SGX)

Event bus
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Security for cloud-edge continuum [VEDLIoT]

•Wasm: standard for a bytecode format
• Compilation target for mainstream

programming languages
• Universal runtime (not only for the web)
• WebAssembly system interface (WASI)

for system interactions
• Pros
• Lightweight bytecode and specifications
• Code execution is sandboxed (also protects the host)
• Near-native speed with AOT and JIT compilation
• Same code on cloud, edge, IoT devices: cloud-edge continuum

Privacy-Preserving Data Processing at Scale: How Much Can You Trust Your Cloud Provider? — P. Felber 47



WebAssembly + TEEs [VEDLIoT]

Twine for Intel SGX [ICDE’21] + WaTZ for Arm TrustZone [ICDCS’22]

• Execute Wasm code securely within TEE
• Leverage WASI to replace POSIX and deliver TEE features
• Benchmarks (Polybench/C and SQLite) show <3 slowdown

⇒ Confidential computing for the could-edge continuum
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Wrapping up
• Scalability and security are often conflicting goals
• Scalability can best be achieved by outsourcing
• Security by keeping data and computations on-premises

• Recent advances in HW security extensions pave the way 
to privacy-preserving data processing in the cloud
• Enabled by confidential computing environments

• Threats should not be underestimated
• Multi-tenancy exposes data and computations to exploits
• Vendors protect from different threat models
• HW security is no silver bullet: need multiple protection layers
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